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Abstract. Drops and bubbles are ubiquitous. Stokes, Rybczynskii, Hadamard, Boussinesq and
others provided the drag law experienced by a drop. Young, Goldstein and Block and others
studied the motion due to interfacial stresses induced on a drop immersed in a medium where
an imposed thermal gradient exists. They demonstrated the possibility of its levitation in the
presence of gravity. Levich, Sanfeld and others pointed out the role played by surfactants in
affecting the drag law and the possible fluid motion inside the drop. All those works refer
to passivedrops, i.e. drops experiencing at most the interfacial stresses due to variation of
interfacial tension with temperature or surfactant concentration in the surrounding fluid near the
drop surface. After providing a succinct account of the results of the earlier theories and
some relevant experiments, we consider the behaviour of anactive drop, i.e. a drop with
chemical reaction at its surface or with an internal heat generation source, etc. Attention is
focused on the case of a drop immersed in ahomogeneoussurrounding when due to surface
stresses (the Marangoni effect) and, consequently, due to thermo/soluto-hydrodynamic instability
there is spontaneous breaking of the radial symmetry of the temperature and/or concentration
distributions, hence overcoming the drag and originating self-sustained translational drop motion.
Moreover, the autonomous motion may offer a multiplicity of steady values for a given external
(weak) force like buoyancy, and levitation is possible for multiple (weak) buoyancy levels.

1. Introduction; the role of surface tension and surface tension gradients

When there is an open surface or an interface exists between two liquids, the surface or
interfacial tension accounts for the jump in normal stresses proportional to the surface
curvature across the interface, and hence affects its shape and stability. Gravity competes
with the Laplace forces in accommodating equipotential levels with curvature. Their balance
permits, for instance, the stable equilibrium of the spherical shape of drops and bubbles.

When surface tension varies with temperature or composition and, consequently, with
position along an interface, its change takes care of the jump in the tangential stresses.
Hence its gradient acts like a shear stress applied by the interface to the adjoining bulk
liquid (Marangoni stress), and thereby generates flow or alters an existing one. Surface
tension gradient-driven flows are known to also affect the evolution of growing fronts, and
measurements of transport phenomena. The variation of surface tension along an interface
may be due to the existence of a thermal gradient along the interface or perpendicular to it.
In the former case, we have instantaneous convection, while in the latter, flow occurs past
an instability threshold.
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To qualitatively assess the role of gravity relative to forces induced by surface tension
or its gradient, some dimensionless groups help. There is the (static) Bond number
Bo = gl2 1ρ/σ , where1ρ is the density difference between two fluids (think of a drop of a
fluid immersed in another liquid),σ is the interfacial tension andl is the space scale involved
in the problem. In Earth-based experiments, gravity overcomes surface tension effects when
l and1ρ are large enough. With surface tension gradients we have the modified (dynamic)
Bond numberBo∗ = gl2 1ρ/1σ , although thermal gradients are generally accounted for
by the Marangoni number,Ma = l 1σ/ηχ = Pr Reσ , whereη is the dynamic viscosity
(η = ρν), χ is thermal diffusivity, Pr = ν/χ is the Prandtl number, andReσ denotes
a surface Reynolds number, with the gradient-induced velocity scaleV = 1σ/η, and
1σ = (dσ/dT )1T . Thus the Marangoni number is a Peclet number,Pe = V l/χ , in the
heat equation—this is quite like how the standard Reynolds number appears in the Navier–
Stokes (momentum) equations. Other forms of Peclet number may be of use according to
the velocity scale involved in the problem.

Surface tension gradient-driven flows are, generally, laminar flows, with or without
cellular patterns, like in B́enard convection [1–3]. For interface and bulk fluid moving
tied together, only high enough Marangoni numbers lead to turbulent flows with high
dissipation. As for flows driven by capillary forces the Peclet/Marangoni number appears
in the heat equation; then for high Prandtl number fluids the velocity field is slaved by
the temperature while for low Prandtl number fluids the latter slaves the former. In flows
with very low Re, inertia can be neglected in the flow (e.g. Stokes creeping flow) of
very viscous fluids like the silicone oils, where however possible high values ofMa exist.
Consequently, Reynolds (Kolmogorov) turbulence, which is mostly inertial, appears as a
different regime from the interfacial turbulence or space-time chaos in capillary-driven flows
(with high Pr) where there is strong dissipation—hence the interest in proceeding to high-
Peclet/Marangoni-number flows to explore new features of turbulence with the numerical
approach and benefiting from the rather recent opportunity offered by low-g experimentation.

High-Peclet/Marangoni-number flows, and thus apparently predominant surface tension
gradient-driven flows in Earth-based experiments, are different from analogous low-g flows.
For instance, in an externally imposed thermal gradient, for the instantaneous surface tension
gradient-driven flow of a drop or a bubble to be steady in the presence of gravity, a non-zero
hydrodynamic force is needed, which is quite a different case from that for low-g conditions.
Hence Earth-based and low-g Marangoni flows of drops or bubbles are different. Indeed,
gravity-induced motions alter the temperature field in the fluid surrounding the drop or
bubble, thus changing the Marangoni forces acting on it.

Since the generation of a surface tension inhomogeneity is related to the imposition
of thermal gradients, in Earth-based experiments buoyancy-induced flows can also occur
simultaneously with surface tension gradient-driven flows. Then the relative magnitude
of surface tension gradient and buoyancy forces is given by the inverse ofBo∗. Surface
deformation and surface curvature appear in the complete balances of tangential and normal
stresses, respectively. The former balance yields a capillary numberCa = ηV/σ , that,
using V as earlier defined, accounts for the relevance of surface deformation effects in a
surface tension gradient-driven flow. Instantaneous motion caused by purely capillary forces
provokes the surrounding fluid to move towards the cooler region while the drop or bubble
moves towards the warmer one. When surface tension is not constant a spherical drop or
bubble tends to become deformed due to the normal-stress (im)balance at the interface. At
least in capillary-driven creeping flow, the curvature change is of order1σ/σ , i.e. of order
Bo/Bo∗, which is the capillary number, and asCa is much smaller than unity, deformation
is not really relevant.
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The surface tension variation acts dramatically on interphase transport processes,
evaporation, adsorption/desorption processes, drop and bubble migration, etc. Indeed, when
a highly surface-active substance is strongly adsorbed at an interface the resulting surface
film tends to alter transport rates either hydrodynamically, by locally damping or enhancing
eddies and ripples, or by causing stagnation over a considerable portion of the interface, or
if the molecules form a highly packed film by imposing an (energy) barrier to the passage
of other molecules across the interface. Even minute traces of surfactant are known to
produce dramatic effects at both quantitative and qualitative levels. Theory and Earth-based
experiments indicate that transport processes, surface chemical reaction processes, catalysis
phenomena,. . . can be altered by either buoyancy-driven or surface tension gradient-driven
flows, or both appearing together, due to even mere ppm changes in composition. For
instance, when a surfactant changes the surface tension, interfacial instability can appear
during transfer out of the phase of higher kinematic viscosity or lower solute diffusivity.
Amplification of interfacial convective motions can also be promoted by large1σ -changes
with composition, large thermal gradients, and large differences of kinematic viscosity and
diffusivity between phases.

In this paper we will concentrate on the specific dynamics of (passive or active) drops
or bubbles immersed in another fluid. Drops and bubbles are ubiquitous. Liquids used to
power space vehicles or used in Shuttle cooling systems, upon evaporation lead to bubbles—
hence the need of capillary forces, and eventually surface tension gradient-driven flows, to
manage bubbles, isolated or in clusters following aggregation and possible coalescence for
low g. When one phase is dispersed in another as a drop or bubbles, the approach of an eddy
causing a surface deformation and a local reduction in surface tension can cause violent
motion which in turn creates other eddies. The coalescence of drops with either different
solutes or different solute concentrations, or the introduction of jets of solvent, can cause
similar sudden movements, altering mass transfer. Boiling leads to formation of relatively
small bubbles that in Earth-based experiments float, and move up but distribute all over
the container, while in low-g conditions bubbles tend to coalesce, thus forming bigger ones
that drastically affect the overall process. Clearly, drop dynamics is not just of mere fluid
physics interest. It is of relevance in atmospheric sciences, chemical engineering, materials
science, etc. Understanding some aspects of drop dynamics has led to the most spectacular
albeit simple technological spin-off of microgravity space research.

2. Drops and bubbles; hydrodynamic drag

A liquid drop is a model for many natural systems as disparate as planets, nuclei, etc. As
indicated by the definition of the Bond numbers given earlier, it is also ag-detector. Drop
dynamics provides the test ground for theoretical analyses (e.g. using matched asymptotic
expansions), experimental techniques and numerical methods (which on occasion perform
better than real experiments). The study of drops also allows one to sequentially proceed
from simple to complex.

From Newton’s experiments in 1710, theory and later observations, the magnitude of
the drag force on solid drops/spheres in steady motion of a viscous fluid was given as

FD = 0.22πa2ρU2
∞ (1)

whereU∞ is the relative velocity of the particle and fluid,a is the particle radius, andρ is
the fluid density. This kinetic theory relation is for ‘large’ values ofU∞, for which inertial
effects are important.
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Stokes, in 1850, suggested that at very low relative velocities the inertial effects are so
small that they can be omitted from the Navier–Stokes equations. Under these conditions,
the total drag on a solid sphere is

FD = 6πηaU∞. (2)

In 1911–12 Rybczynskii and Hadamard, independently, solved the Stokes problem for a
liquid drop with flows outside and inside. Their extension of (2) is

FD = 4π
1 + 3β/2

1 + β
η1aU∞ (3)

with β = η2/η1, where the subscriptsi = 1, 2 correspond to the liquids outside and inside
the drop, respectively. Clearly, the limitη2 going to infinity yields back Stokes’s law (2),
while η1 � η2 yields the corresponding law for a bubble, with the factor 6 being replaced
by 4 in (2) [4].

Oseen pointed out that at a great distance from the sphere the inertial terms become as
important as the viscous terms, and suggested a possible improvement of the Stokes law
(2) by taking inertial terms partly into consideration [5]. His drag force is

FD = 6πηaU∞

(
1 + 3

8
Re

)
(4)

whereRe = U∞a/ν. Today we know that neither Stokes’s nor Oseen’s laws are uniformly
valid. Rather Stokes’s analysis is valid in a small enough neighbourhood of the sphere
(creeping flow at zero Reynolds number) and Oseen’s analysis though valid for matching
at the flow velocity values far from the sphere is not valid when approaching it. The Oseen
approximation although incorporating inertial terms is still a linear theory. Several authors
did attempt, not always successfully, an improvement upon the Oseen and Stokes analyses.
It was not until 1957 that Stokes’s and Oseen’s results were properly put in context and
generalized, thanks to the works of Proudman and Pearson [6] and Kaplun and Lagerstrom
[7], who developed the matched-asymptotic-expansions method for the flow around the
sphere. The basic concept was to consider Stokes’s solution as a local (inner) solution of
the problem and Oseen’s as a regular (outer) solution rather than considering Oseen’s as
an improvement upon Stokes’s. The inner solution was assumed to be valid in a spherical
region of radius 1/Re around the sphere while the outer solution was valid from infinity
down to the 1/Re neighbourhood. In the overlapping zone both solutions were accepted as
valid—hence the need for appropriately matching them. Proudman and Pearson found that
for flows with non-vanishing although low Reynolds number (Re � 1), the hydrodynamic
drag on the sphere is

FD = 6πηaU∞

(
1 + 3

8
Re + 9

40
Re2 ln Re + O(Re2)

)
(5)

which shows the non-analytic form of expansion. The scheme of Proudman and Pearson
was also applied to the problem of heat/mass transfer to (from) a sphere (see e.g. [8, 9]).
Acrivos and Taylor [8] considered the convective terms in the heat equation while using the
Stokes flow. They obtained a Peclet number (Pe = U∞a/χ ) expansion of the (convective)
Nusselt number:

Nu = 1 + 1

2
Pe + 1

2
Pe2 ln Pe + 0.415Pe2 + 1

4
Pe3 ln Pe + O(P e3) (6)

which also shows a non-analytic form.
As already noted for flows driven by capillary forces in high-Prandtl-number fluids,

what actually matters is the Peclet number, and the Stokes approximation is a quite valid
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starting point (atRe = 0 the velocity field is slaved by the temperature). Subramanian [10]
and later on Merritt [11] solved the problem of the drift of a drop in an external temperature
gradient using the matched-asymptotic-expansions method but not leading in this case to a
logarithmic term.

Taylor and Acrivos also considered the deformation of the sphere (a bubble) and showed
that for it to be noticeable the capillary number must be non-negligible [12]. For a slightly
deformable bubble they obtained the radius in terms of the angleθ :

a(θ) = a

[
1 − 5

48
Re Ca(3 cos2 θ − 1)

]
(7)

for Re � 1 andCa � 1. Note that atRe = 0 (i.e. in the creeping-flow approximation) a
drop or a bubble remains spherical irrespective of the low or high value of the (constant)
surface tension. Equation (7) shows that a drop or a bubble will be deformed from the
spherical shape when inertial effects are taken into account. However, deformation may be
relevant even when inertial effects are ignored if as earlier noted the surface tensionσ is
sufficiently non-uniform.

Different authors have also extended the theory to account for various non-Newtonian
fluid properties like first and second normal-stress coefficients for viscoelastic fluids or
multi-scales (Oldroyd fluids) and power laws.

Young, Goldstein and Block [13] were the first to realize the possibility of levitating
a drop or a bubble by means of capillary forces (Marangoni stresses). They showed that
a drop or a bubble placed in a temperature gradient tends to move towards the hotter
point. This is the motion of the drop relative to the flow induced along its surface by the
lowering of surface tension at its leading pole (hotter than the rear pole). The Marangoni
stresses not only help in overcoming drag but even lead to positive (bubble) or negative
(heavy-drop) buoyancy, and hence levitation for a sufficiently high temperature gradient.
Using the Stokes–Rybczynskii–Hadamard approximation they also computed the terminal
velocity of a drop or a bubble in the field of gravity (Re � 1, Pe � 1; here these numbers
are defined using the far-field velocity scale), and experimentally checked the theoretical
prediction within reasonable accuracy (within 20%) with an experiment using rising bubbles
in a liquid layer heated from below (diameters 2a = 10−3–2.2 × 10−2 cm; dT/dz = 10–
90 K cm−1). Later on Bratukhin, Briskman, Zuev, Pshenichnikov and Rivkind [14] did
a similar experiment with rising bubbles in a laterally heated vertical liquid layer. They
experimented using neutrally buoyant liquid water at 4◦C. For the Young, Goldstein and
Block problem the balance between capillary, buoyancy and drag forces is

Fσ + Fg + FD = 0 (8)

with the (Marangoni) capillary force

Fσ = − 4πa2

(1 + β)(2 + δ)

dσ

dT
(∇T )∞ (9)

and the buoyancy force

Fg = 4

3
πa3g(ρ2 − ρ1). (10)

The drag forceFD was defined in (4).δ = λ2/λ1 is the ratio of thermal conductivities (drop
to surrounding fluid).

In their experiment, Younget al used a liquid bridge. An improvement eliminating
possible capillary convection at the open sides was carried out by Hardy [15]. He used a
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closed cavity with silicone oil and air bubbles (2a = (5−25) × 10−3 cm; dT/dz = 40–
140 K cm−1). Hardy noticed the role of contamination at the surface of the bubble
earlier noted by Levich [4]. Further improvement came with an experiment by Merritt and
Subramanian [16]. Experimentalists started using drops rather than bubbles. Barton and
Subramanian [17] used neutrally buoyant drops (2a = 20–600µm, dT/dz = 2.4 K mm−1).
Recent Earth-based and low-g (TEXUS, D2) work by Braun and colleagues [18] on
thermocapillary migration of drops provided the most accurate verification of the Young,
Goldstein and Block prediction. They used flows with Peclet/Marangoni numbers in the
range 10−5–10−6, but with non-standard surface tension gradient behaviour, i.e. the surface
tension increasing with the increase of temperature (2-butoxyethanol–water mixture with
liquid/liquid phase separation at 61.14◦C on the lower branch of the closed miscibility gap;
2a = 11 mm, dT/dz = 36.9 K m−1, dσ/dT > 0). For an extensive review see [19, 20].

Worth mentioning also are experiments carried out by Neuhaus and Feuerbacher [21]
who found disagreement with the Young, Goldstein and Block prediction but who proposed
that the solution of the difficulty lay in augmenting the theory with a surface dilatational
viscosity, in agreement with a conjecture put forward long ago by Boussinesq (see reference
[4]).

The above-given evidence shows how the slightest thermal gradient does induce, via
the Marangoni effect, drop motions outside and inside. The case is very much like that of
the flow induced by the slightest pressure gradient in the bulk of a liquid.

3. Active drops

Recently, we have taken a new approach to the study of drop (or bubble) motions, linking the
classical ideas to the more recent studies of hydrodynamic instabilities, and hence leading to
new, fascinating theoretical results. We have studied the influence of theradial temperature
and/or concentration profiles, which would exist inside and/or outside a motionless drop,
on the possible drop motion, when the medium far away from the drop ishomogeneous.
The profiles may be due to chemical reactions [22–30], and uniform heat generation inside
a drop [31–33] or on the surface [34], which itself may be due to a chemical reaction or
radiation absorption, and also temperature relaxation, when the drop and the outer fluid
initially have different temperatures [35]. Losing their spherical symmetry due to motion
of fluids inside and outside the drop, the temperature and/or concentration distributions
promote the appearance of the Marangoni stresses on the drop surface, hence dramatically
affecting the drop behaviour. For instance, we have shown that due to the radial profiles
the motionless state of fluids inside and outside the drop in the absence of buoyancy can be
unstable to convection, and a countable number of linear unstable modes appears, each one
having its own steady instability threshold [25, 28, 33]. The fundamental mode includes
drop translation, while the other modes correspond to some flow inside and outside the
drop without its translation as a whole. The latter possibility was studied by Sanfeld and
collaborators [29, 30]. Up to now several results have been obtained around translational
steady instability when the instability thresholds for the other modes are higher than the
translational threshold.

For instance, for small enough buoyancy there can be up to three [23–28, 32–34] or up
to five [33] stationary regimes of drop motion. The stability analysis shows that only one of
the three and two of the five regimes can be stable [25, 33, 36]. In the absence of buoyancy,
besides the motionless state, autonomous or self-sustained motion can exist [23–28, 32–34],
neutrally stable to velocity perturbations in an orthogonal direction [25, 33, 36]. Another
multiplicity can also occur, e.g. the drop can move at a given single velocity under up to
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three different levels of buoyancy [25, 34]. It has also been shown that levitation of a
drop under non-zero buoyancy is possible, when the appropriate balance exists due to the
induced flow rather than to some external factor or inhomogeneity [25, 34]. This situation
is indeed richer when the self-propulsion exists together with external inhomogeneities [26].
Finally, the interaction of modes yields qualitatively different multiplicities of the motion
regimes [37].

4. Interfacial instability

Let us consider, for instance, a drop with uniform internal heat generation suspended in an
infinitely extended homogeneous liquid. If the liquids inside and outside the drop, as well
as the drop as a whole, are at rest, a radial temperature distribution is established, with the
hottest temperature in the centre of the drop and the coolest temperature far away from the
drop. As soon as due to some spontaneous fluctuation or the action of a bias field like
buoyancy the drop is set in motion, the radial symmetry of the temperature profile breaks
down, thus inducing a non-homogeneous temperature distribution along the drop surface,
which in turn couples to the initial fluctuation that may be reinforced. Indeed, the tangential
(Marangoni) stresses produced by the surface tension variation with temperature should be
compensated by an additional motion of the liquids; hence, the Marangoni effect plays the
role of feedback mechanism.

Now let us observe what effect on the motion of the drop could be produced as a
whole. This largely depends on the temperature difference that arises between its leading
and trailing poles. As the surface tension usually decreases with increasing temperature,
when the leading temperature is lower than the trailing one, the Marangoni stresses act
from the trailing pole to the leading one, thus increasing the resistance to the motion, a
phenomenon discussed by Levich [4] in the context of surface contamination by surfactants.
In the opposite case, when the temperature at the leading pole is higher than that at the
trailing pole, the Marangoni stresses act, helping the drop to keep moving. If the temperature
difference is strong enough to overcome dissipative effects (a ratio that is measured in terms
of the Marangoni number), the drag force usually accompanying the motion of objects in
a liquid medium is replaced for our drop by thrust. Thus various regimes may be found
when the drop movesagainst the mass forces. Under free-fall conditions, the motionless
state of the drop can become unstable and the drop spontaneously starts to move and keeps
steadily moving—hence anautonomousor self-sustainedmotion ensues. In the absence of
buoyancy or any other external force all directions in space are allowed for this autonomous
motion. Then the breakdown of this symmetry can only be induced by the initial conditions.
When a force is present, and if it is weak enough, a multiplicity of steady regimes of the
drop motion persist. Actually, one of the regimes is the low-velocity unstable regime, which
proceeds from the motionless state, slightly shifted by the force. Two other possible regimes
are with velocities close to the autonomous motion velocity. On the other hand, if the force
is strong enough, the multiplicity associated with the autonomous motion is suppressed and
there remains only a single motion regime.

Coming back to the drop with uniform internal heat generation, let us identify the
factors determining the sign of the temperature difference. There is competition between
two mechanisms. As the temperature at infinity is lower than that at the surface of the
drop, the flow brings cooler fluid to its leading pole. However, as the temperature inside
the drop is higher than that at the surface, internal circulation in the drop brings fluid at
higher temperature to the leading pole. The result of this competition depends on the ratio
of the thermal diffusivities inside and outside the drop. When the latter is high enough the
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convective heat transport outside is not important as compared to that inside, and the leading
pole becomes hotter than the trailing one. If in addition the heat generation is strong enough,
and hence the Marangoni number is high enough, then the absolute value of the temperature
difference helps in overcoming the dissipation, thus promoting the effects discussed earlier
[33]. An order-of-magnitude estimate yields that for a drop of 1 mm diameter, several
degrees kelvin in temperature difference suffice for reaching the instability threshold.

Until now we have only discussed the influence of the Marangoni effect on the motion
of the drop as a whole. However, the motionless state of liquids can also be unstable
to convection inside and outside the drop without global translation of the drop. The
mechanism is again that the flow causes a redistribution of temperature at the surface and
hence promotes the motion. There exist a countable set of modes characterized by the
number of circulation zones inside the drop. Each mode has its own steady instability
threshold that can be expressed in terms of a critical Marangoni number. For the higher-
order modes, when the number of circulation zones is sufficiently large, the analogy with the
problem of B́enard–Marangoni instability in a system of two horizontal infinitely deep liquid
layers subjected to a vertical temperature gradient [38] becomes apparent. Indeed, let us
focus on the ratio of thermal diffusivities. For the two-layer system we know that the steady
instability occurs only if the thermal diffusivity of the hotter phase is just barely smaller than
that of the colder phase. The same argument holds for the high-order modes in the drop.
However, for low-order modes this condition should be modified. In the latter case we can
only demand that the thermal diffusivity of the hotter phase is smallenough. A more precise
answer demands some calculations. The reason for this is the geometrical asymmetry of
the phases. Just by analogy with the two-layer case where oscillatory Marangoni instability
was predicted [38], an oscillatory instability should be also expected for the drop motion.

5. Linear modes and their steady Marangoni instability thresholds

The stationary motion of a drop in a large extended fluid is considered. We assume that
both the Reynolds and the Peclet numbers are small and that the drop is spherical. The
fluids inside and outside the drop are treated as Newtonian and incompressible. A reference
frame where the drop is motionless is used. In the leading order the flow field inside and
outside the drop obeys the Stokes equation

E2 E2 ψi = 0 (11)

with

E2 = ∂2

∂r2
+ sin2 θ

r2

∂2

∂(cosθ)2 . (12)

Hereψ is a stream function defined as

vr = 1

r2 sinθ

∂ψ
∂θ

vθ = − 1

r sinθ

∂ψ
∂r

and r, θ are the radial and angular spherical coordinates (the origin is at the centre of the
drop), andvr andvθ are the radial and angular components of the velocity field. As earlier,
the subscriptsi = 1, 2 correspond to the regions inside and outside the drop, respectively.

Far away from the drop we have a uniform flow with a velocityU∞ just opposite to
that of the drop in the laboratory frame of reference, i.e.

ψ1 → U∞ r2 sin2 θ/2 asr → ∞. (13)
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At the drop surface (r = 1, where the radial coordinate is non-dimensionalized with the
drop radiusa) the stick and no-penetration conditions must be satisfied:

ψ1 = ψ2 = 0 ∂ψ1/∂r = ∂ψ2/∂r. (14)

Using the general solution of the Stokes equations [39], the solution of our problem (11)–
(14) is

ψ10 = U∞ (r2 − 1/r) G2(µ) +
∞∑

n=2

An(r
−n+3 − r−n+1) Gn(µ) (15a)

ψ20 = 3

2
U∞ (r4 − r2) G2(µ) +

∞∑
n=2

An (rn+2 − rn) Gn(µ) (15b)

G2(µ) = 1 − µ2

2
G3(µ) = µ(1 − µ2)

2
· · ·

whereGn(µ) (n = 2, 3, . . .) are the Gegenbauer polynomials of the first kind, of ordern

and of degree−1/2, andµ = cosθ . As r is dimensionless, the stream function has the
dimension of velocity.

As shown by Happel and Brenner [39], the hydrodynamical force is determined by a
single coefficient in the series (15a), (15b):

Fhd = −4πη1aA2. (16)

The valuesU∞ andFhd occurring in (15), (16) are considered positive when they align
with the positive direction of the symmetry axis (θ = 0) and otherwise negative. For a drop
to be in steady motion the sum of the hydrodynamical and buoyancy forces must vanish.
Hence the coefficientA2 is determined by buoyancy.

To find the unknown coefficients in (15) we use the tangential-stress balance(
2

∂

∂r
− ∂2

∂r2

)
(η1ψ1 − η2ψ2) + sinθ

∂σ

∂θ
= 0 at r = 1. (17)

When the Marangoni effect acts, the velocity field cannot be treated separately from
the temperature and/or concentration fields. As mentioned earlier, here we consider the
effect of radial temperature and/or concentration profiles. The results for this case may
be represented in a quite general form, irrespective of what particular physico-chemical
processes lead to these profiles.

For low Peclet numbers, in the leading approximation we have just unperturbed radial
distributions of temperature and/or concentration, and hence homogeneity along the drop
surface. A non-trivial effect on the tangential stresses (17) appears only in the next-order
approximation, when a convective contribution to the temperature and/or concentration
fields breaks the spherical symmetry. The temperature and/or concentration variation along
the surface is a linear combination of the constants occurring in (15). The same is the
case for the surface tension if we assume that it changes linearly with temperature and/or
concentration.

In each particular problem, a (suitably modified) Marangoni numberm is introduced,
which is proportional to the surface tension variation with temperature or concentration and
to a characteristic radial temperature or concentration gradient. Then condition (17) yields
a set of equations corresponding to different modes which correspond to different orders of
the Gegenbauer polynomials:[

φ1({P }) m + 1 + 3β/2
]
U∞ + [φ2({P }) m + 1 + β] A2 = 0 (18)

(m − mn)An = 0 (n = 3, 4, . . .) (19)
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whereβ = η2/η1 is the ratio of dynamic viscosities;φ1({P }) andφ2({P }) are some functions
of a set of material parameters{P }; mn are also functions of the material parameters of the
problem. Note that equations (19) giveAn = 0 for m 6= mn and leaveAn free form = mn.
Note also that in the absence of the Marangoni effect (m = 0) equations (16), (18) provide
exactly the Rybczynskii–Hadamard expression (4) for the drag forceFD.

In general, the expressions within square brackets in (18) can be either positive or
negative, and henceA2/U∞ can be either negative or positive. Consequently, the force
(16) can be either drag (U∞ and Fhd have the same sign) or thrust (U∞ and Fhd have
opposite signs). The origin of this thrust has already been explained in section 2 using the
example of a drop with uniform internal heat generation placed in a liquid with a uniform
temperature distribution [33]. Here to complete our arguments let us consider another
example, namely, a drop suspended in a homogeneous solution of a surfactant which is
adsorbed at the drop surface and then disappears there in a first-order chemical reaction. In
this case the Marangoni stresses are created by the variation in the surfactant concentration
at the surface of the drop. To reduce the drag down to zero or even to create thrust we
need a mechanism for the concentration at the leading pole of the drop to be higher than
that at the trailing one. The surface chemical reaction does provide such a mechanism.
As we consider the case of surfactant consumption, the concentration at the surface is
lower than the homogeneous value at infinity. Thus the flow brings to the leading pole a
higher concentration of surfactant. Generally, there is competition between this and other
mechanisms (for example, convective transport of the surfactant along the surface film to
the trailing pole), and eventually the possibility of reducing the drag and even of obtaining
thrust [25].

There are twocritical valuesm1 andm2 of the parameterm at which the coefficientA2

vanishes and diverges to infinity, respectively (forU∞ 6= 0). Equation (18) gives

m1 = −(1 + 3β/2)/φ1

m2 = −(1 + β)/φ2.

Thus we see that whenm = m1, according to linear theory the drop experiences no
drag, and its velocity diverges to infinity irrespective of the value of the buoyancy. If,
on the other hand,m = m2, the drop experiences unbounded drag/thrust, whatever the
value of its velocity may be. These two results show the limitation of the linear study
in some asymptotically small vicinities ofm1 andm2. Thus corrections with higher-order
contributions must be taken into account (a weakly non-linear analysis for these cases is
provided later on). Nevertheless, the conclusion that whenm is close tom1 (m2) the drop
motion induced by buoyancy is faster (slower) than the corresponding motion in the absence
of the Marangoni effect can already be reached on the basis of the linear analysis.

In view of the similarity of the linear problem and the problem for the neutral
steady perturbations, one can see that in the absence of buoyancy the critical valuesmn

(n = 1, 2, . . .) of the Marangoni parameterm correspond to the neutral stability of the
motionless state of the drop and of inner and outer fluids. Eachmn (n = 1, 2, . . .) represents
the steady instability threshold for the corresponding mode of (15). For the higher-order
modes (n = 3, 4, . . .), which describe the motion of the fluids inside and outside the drop
without its translation, this conclusion follows directly from (19). The critical valuem1

is the instability threshold for drop translations. Indeed, in the absence of buoyancy the
demand that the net force acting on the drop vanishes reduces to that of having a vanishing
hydrodynamical force (16). As atm = m1 we haveA2 = 0, this condition is satisfied for
an arbitrary velocityU∞.

The interpretation of the critical valuem2 is less obvious. It is the instability threshold
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for a fixed drop, i.e. a drop which is forced to remain at rest as a whole whatever flows
develop around it, in contrast to afree drop, which is free to translate. Indeed (18) gives
arbitrary A2 for m = m2, U∞ = 0. Later on we consider the concepts of free and fixed
drops with further generality. That is, we shall call a drop moving under a given buoyancy
force free, while a drop driven at a given velocity will be calledfixed.

As far as the stationary situation is concerned it makes no difference whether the drop
is free or fixed. The difference appears only for the evolution problem—in particular, for
linear stability. Note that our problem, when naturally extrapolated to the transient situation,
corresponds in fact to a free drop. In order to consider the case of a fixed drop one has to
incorporate some mechanism capable of keeping the drop at a fixed velocity whatever flows
develop outside and inside it. Thus when we speak of a fixed drop, we tacitly assume the
availability of such a mechanism.

While the instability thresholds for free and fixed drops are different—m1 and m2

respectively—those for the higher-order modesmn (n = 3, 4, . . .) do not depend on whether
the drop is free or fixed. From now on here we deal only with the case of a free drop. Note
that themn (n = 1, 2, . . .) are not necessarily associated with the axisymmetrical modes. In
view of the spherical symmetry of the motionless base state this result is enough to ensure
that a three-dimensional analysis will not add new thresholds.

In the simplest cases allmn (n = 1, 2, . . .) have the same sign and the subset|mn| gets
higher values asn becomes higher [25, 28, 33]. Nevertheless in the general case one may
expect that the thresholdsmn can be ordered in any sequence. The numbern of the lowest
positive threshold and that of the highest negative one, if any, determine the mode(s) for
which the Marangoni instability occurs first as|m| is increased. For the simplest cases the
translational instability appears first.

6. Instability and non-linear drop motions

6.1. The case wherem → m1; autonomous motion

In this section we considerm close to the translational instability thresholdm1. Thus we
assume that|m − m1| � 1, |m − mn| ' 1 (n = 2, 3, . . .). In the linear approximation,
higher-order terms in low Reynolds/Peclet numbers have been neglected in equation (18).
However, if the coefficientm − m1 is small enough such a limitation may not be adequate.
Thus to discuss this case some higher-order contributions need to be taken into account in
equation (18). It is also clear that the higher-order terms to be incorporated must depend
on U∞ but not onA2 since in the latter case they would be only a small correction to the
second term in the left-hand side of equation (18). Besides, symmetry demands that the
additional contribution is odd inU∞. Finally, instead of equation (18) we have

φ1(m − m1) U∞ + K1
a

d
|U∞| U∞ + φ2 (m − m2) A2 = 0 (20)

whered is a mass/thermal diffusivity coefficient specific to each particular problem.
Whenφ1(m − m1)K1 < 0, equation (20) has three solutions forU∞ if the force (orA2

which is related to the force by (16)) is weak enough. This corresponds to three different
regimes of drop motion. The dependence ofFhd on U∞ is defined by (20), (16). In the
absence of buoyancy (A2 = 0), besides the motionless state we may have autonomous or
self-sustained drop motion at a velocity whose absolute value is

|Uaut | = −φ1 (m − m1) d

K1 a
.
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Depending on the signs ofφ1 and K1, this motion is either supercritical (i.e. for
|m| > |m1|) or subcritical. As was already said, in the absence of buoyancy all directions
in space are allowed for the autonomous motion and the breakdown of this symmetry can
only be induced by the initial conditions.

A stability analysis restricted to steady disturbances [25] shows that the states
corresponding to the extrema of the force versus velocity curve are neutrally stable to
velocity perturbations aligned with the base velocity, while the autonomous motion regime
is neutrally stable to orthogonal perturbations. There are no other neutrally stable states
among those described by equation (20). Then, in principle, if we knew the stability status
of the motionless regime (U∞ = 0), and if we were sure that oscillatory instability does not
occur in our system, we could extrapolate by continuity the stability status of the state of the
remaining motion regimes. For example, if the motionless state of the drop (in the absence
of buoyancy) is unstable, we could conclude that the motion regimes with velocities in the
range 0< |U∞| < |Uaut |/2, where|Uaut |/2 corresponds to the extrema of the curve ofFhd

versusU∞, are unstable to both parallel and orthogonal perturbations. The motions with
|Uaut |/2 < |U∞| < |Uaut | become stable to parallel perturbations, albeit still being unstable
to orthogonal ones. For|U∞| > |Uaut | the motion is stable. Alternatively, if the motionless
regime is stable, in the first of the above velocity intervals we have stability, in the second
one, instability to parallel perturbations and stability to orthogonal ones, while in the third
interval, we have instability to both types of perturbation.

If an oscillatory instability is possible, the above argument does not hold. A sufficient
condition for overstability could be e.g. that the rest state is unstable to steady disturbances
in the subcritical region, i.e. for |m| < |m1|. This follows from two facts: (1) atm = 0
there is stability, (2)m1 is the only possible threshold for the steady instability. Then, by
continuity, the oscillatory instability should inevitably exist with a threshold belowm1, the
threshold for the steady instability. A detailed study of this possibility is under way and
will be published elsewhere.

Note that to respect symmetry in the Landau theory, a weakly non-linear analysis usually
involves a cubic non-linear term. However, equation (20) contains a quadratic term with
the symmetry taken into account by writing it as a pseudoquadratic term. This remarkable
difference originates in the specific properties of the matching problem at low Peclet number
for the temperature/concentration field when the form of the non-linear term of equation (20)
is determined by the region far away from the drop [33]. Then one may expect that for
relatively high diffusivity coefficients of the outer fluid relative to that of the inner fluid the
usual cubic term would dominate.

6.2. The case wherem → m2; non-single-valued hydrodynamical force

Let us consider now the case wherem → m2, |m − m1| ' 1, |m − mn| ' 1 (n = 3, 4, . . .).
Equation (18) must be modified with a non-linear term depending onA2 which has to be
odd in A2 by symmetry. We have

φ1 (m − m1) U∞ + φ2 (m − m2) A2 + K2
a2

d2
A3

2 = 0 (21)

whereK2 is a coefficient depending on the material parameters of the problem (see [25]
for the particular expression forK2 corresponding to the case of a surfactant reacting at
the drop surface). The hydrodynamical force versus the velocityU∞ can be obtained using
(16), (21). For a given low enough drop velocity, three possible values of the force are
available—hence a non-single-valued hydrodynamical force. Thus three different levels of
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buoyancy can lead to the same speed of the drop. A remarkable particular case corresponds
to a levitating drop even in the presence of buoyancy. A stability analysis [25] predicts
stability for all of the regimes found above ifm2 is minimal in absolute value for allmn

(n = 1, 2, . . .) having the same sign asm2.

6.3. Higher-order modes

Consider the higher-order modes (n = 3, 4, . . .). Symmetry demands that the amplitude
equations for the odd-number modes and for the even ones be different. Actually, the even
modes are symmetric: changing the sign of the amplitudesA4, A6, . . . in (15) leads to the
same motion, but differently oriented in space. By rotating the coordinate system byπ we
come back to the initial form. As for the odd modes, changing the sign of the amplitudes
A3, A5, . . . corresponds to a different flow pattern which cannot be obtained from the initial
form by rotation. Symmetry determines the form of the amplitude equations, which are

(m − mn)An + Kn

a

d
A2

n = 0 (22)

for the odd-number modes (n = 3, 5, . . .), and

(m − mn)An + Kn

a2

d2
A3

n = 0 (23)

for the even-number modes (n = 4, 6, . . .). HereKn are again constants that depend on the
material properties of the system. Note that a non-zero solution of equation (22) exists for
both m − mn < 0 andm − mn > 0 (both subcritically and supercritically), while for the
symmetric mode (equation (23)) it exists only under one of these conditions, depending on
the sign ofKn.

7. Concluding remarks

Drops and bubbles are ubiquitous. Stokes, Rybczynskii, Hadamard, Boussinesq and others
provided the drag law experienced by a drop. Young, Goldstein and Block and others studied
the motion due to interfacial stresses induced on a drop immersed in a medium where an
imposed thermal gradient exists. They showed the possibility of its levitation in the presence
of gravity. Levich, Sanfeld and others pointed out the role played by surfactants in affecting
the drag law and the possible fluid motion inside the drop. After providing a succinct account
of the results of the earlier theories and some relevant experiments, we have shown that
when there is heat and/or mass transfer between a drop and its environment, a chemical
reaction at the surface of a drop or internal heat generation, coupled to the Marangoni effect,
i.e. the surface stresses and subsequent flow induced by the surface tension gradients, such
activity and coupling lead to remarkable consequences. For instance, we have that (i) the
drag on the drop may actually become thrust, and hence self-propulsion due to instability
of the motionless state, (ii) autonomous motion may offer a multiplicity of steady values
for a given external (weak) force like buoyancy, and (iii) levitation is possible for multiple
buoyancy levels.
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